A Multivariate Generalized Orthogonal Factor GARCH Model

نویسندگان

  • Markku Lanne
  • Pentti Saikkonen
چکیده

The paper studies a factor GARCH model and develops test procedures which can be used to test the number of factors needed to model the conditional heteroskedasticity in the considered time series vector. Assuming normally distributed errors the parameters of the model can be straightforwardly estimated by the method of maximum likelihood. Inefficient but computationally simple preliminary estimates are first obtained and used as initial values to maximize the likelihood function. Maximum likelihood estimation with nonnormal errors is also straightforward. Motivated by the empirical application of the paper a mixture of normal distributions is considered. An interesting feature of the implied factor GARCH model is that some parameters of the conditional covariance matrix which are not identifiable in the case of normal errors become identifiable when the mixture distribution is used. As an empirical example we consider a system of four exchange rate return series. JEL Classification: C32, C51, F31.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Garch Models of Dynamic Volatility and Correlation

Economic and financial time series typically exhibit time varying conditional (given the past) standard deviations and correlations. The conditional standard deviation is also called the volatility. Higher volatilities increase the risk of assets, and higher conditional correlations cause an increased risk in portfolios. Therefore, models of time varying volatilities and correlations are essent...

متن کامل

Generalized Dynamic Factor Model + GARCH Exploiting multivariate information for univariate prediction

We propose a new model for volatility forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns. In this financial analysis, both these components are modeled as a GARCH. We compare GDFM+GARCH and ...

متن کامل

Dynamic Factor GARCH Multivariate Volatility Forecast for a Large Number of Series

We propose a new method for multivariate forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the multivariate Generalized Autoregressive Conditionally Heteroskedastic (GARCH) model. We assume that the dynamic common factors are conditionally heteroskedastic. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common an...

متن کامل

Efficient Factor GARCH Models and Factor-DCC Models

We reveal that in the estimation of univariate GARCH or multivariate generalized orthogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to making the standardized residuals as independent as possible. Based on that, we propose three factor GARCH models in the framework of GO-GARCH: independent-factor GARCH exploits factors that are statistically as independent as possible; ...

متن کامل

Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models

Time varying correlations are often estimated with multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation models is proposed. These have the  exibility of univariate GARCH models coupled with parsimonious parametric models for the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015